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The problem of an infinite plane porous slider with an isothermal compressible lubricant that is optimum as regards the load 
capacity or static stiffness of the lubricant layer is solved. The solution is found for the case when there is a prescribed constraint 
on the lubrication flow rate through the porous insert. The optimum slider shapes found, and also the size and position of the 
insert, depend on the parameters of the problem that determine the properties of the lubricant and the insert, the supply conditions 
and the flow rate of the lubricant through the insert. �9 2005 Elsevier Ltd. All rights reserved. 

The feeding of lubricant into the working gap of a gas dynamic bearing improves its operating conditions, 
including its operation under start-stop conditions, and also increases the load capacity and stiffness 
of the lubricant layer under working conditions. Among the designs of porous bearings and methods 
for feeding lubricant into the lubricant layer [1-4], we distinguish bearings having porous inserts with 
distributed feeding of lubricant [1, 2]. These possess, for example, increased vibration resistance. The 
operation of bearings with such inserts has been investigated by many researchers who have solved 
different direct problems. Parametric optimization of the characteristics of a porous radial bearing has 
been carried out [5]. The optimum shapes of sliders with an impermeable surface and with respect to 
different parameters have been investigated [6-9]. 

Below, the problem of determining the optimum shapes of a porous infinite slider that ensure either 
maximum load capacity or maximum static stiffness of the layer of isothermal compressible lubricant 
when there is a prescribed constraint on the lubricant flow rate through the porous insert is formulated 
and solved. Additional lubricant is fed from a reservoir at increased pressure through the insert, where 
the lubricant flow obeys Darcy's law. Depending on these conditions, the insert may be different length, 
of equal length or of smaller length than the slider. In the last case it is necessary to determine the 
optimum size and position of the insert. The introduction of a constraint on the additional flow rate is 
due to the practical need to reduce the consumption of lubricant and the energy used to supply it, which 
results in less scope for increasing the load capacity and stiffness. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider a plane slider of length L, infinite in a direction perpendicular to the surface of the drawing 
in Fig. 1, moving over a plane surface y = 0 with a velocity -U in the negative direction of the x axis of 
a Cartesian system of coordinates x, y, z. The shape of the lower surface of the slider is described by 
the function y = h(x). In a coordinate system connected to the slider, the surface y = 0 moves with a 
velocity U, while the slider is at rest. The isothermal lubricant with a density p proportional to the pressure 
p has a constant viscosity ~c- The height of the gap between the slider and the surface satisfies the 
inequality h ,~ L (in Fig. 1 the gap is shown on a magnified scale). The magnitude of the minimum 
achievable height of the gap hm, due to the surfaces moving with respect to each other without touching, 
in specified. Outside the gap (in front of and behind the slider) the pressure of the lubricant is assumed 
to be constant and equal to p=. For a variable height of the gap, the pressure within it p ~ p=, and the 
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slider has a load capacity N, which, being equal to the integral of the pressure over the entire surface 
of the slider, balances out the external load. Along with the load capacity, the static stiffness of the 
lubricant layer G and the additional lubricant flow rate Qp through the porous insert are important. 
Here and below, all the integral characteristics correspondto unit width of the slider in the direction 
of the z axis. 

The slider includes an insert of uniform porosity with thickness D >> h m and length lp < L (shown 
shaded in Fig. 1) and a reservoir with lubricant, the pressure in whichps > p=. Due to the difference 
in pressures in the reservoir and gap, the lubricant is discharged into the gap. Further, in order to simplify 
the analysis, we will assume that for a pressure in the porous insertpp the following inequality holds 

I~pd3yl >> I p,,/Oxl 

If this inequality is satisfied, the lubricant flows through the porous insert and, on leaving the insert, it 
flows in the transverse direction y. In addition to this, we will assume that the flow of lubricant in the 
porous medium obeys Darcy's law [1, 2]. Then the flow density of the lubricant across the insert will 
be given by the equation 

jp(x) = -kpl.t-c 1 pOpp/c3y 

where kp is the seepage coefficient. 
If the isothermal lubricant is an ideal gas, integration of this equation across the porous layer will 

give the relation 

jp(x) = kp(2RTI.tcD)-l(p 2 -  p~) 

where R is the gas constant, T is the absolute temperature, which is assumed to be constant, andp(x) 
is the pressure in the gap. 

The balance equation of the lubricant flow rate stems from the equation of continuity, and for the 
lubricant in the gap has the form [1, 2] 

h 

Q '+ jp  = 0, O = pfudy 
0 

The prime denotes a derivative with respect to x, and u is the longitudinal component of the lubricant 
velocity in the gap. The flow rate Q is expressed in terms ofp,  p' and h in the well-known way [1, 2] 
and is given below in dimensionless form. The additional flow rate of lubricant discharged through the 
porous insert is defined by the integral 

Xl~2 

Qp = f jpdx = Q(xl~2)- Q(Xl31) 

where X~l and x~2 are the longitudinal coordinates of the insert. 
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We will introduce dimensionless variables with the following scales: L for the coordinates x, hm for 
y and h, U for the velocity ad 79~U 2 for the pressure, where y = 61.tdL(p=Uh2) -1. In dimensionless 
variables, the equation for determining the pressure and the flow rate coefficient q in the gap and the 
boundary conditions take the form 

2 2 p ,= = = 
q ' + f f ~ ( p - P s ) = O ,  ( h - q p - ~ ) h  -3, p(O)=p(1)  P.,, q 2 Q / ( z p . U h  m) (1.1) 

with the dimensionless complexes (similarity parameters) 

2 - 1  2-1 = p-I 
13 = 6kt, L2h-m 3D-l, Ps = Ps('YP- U ) , P** = p**('tp.U ) , )~ = )'M 2 (1.2) 

In view of the inequality lp < L, a piecewise-constant function fl~ is introduced, defined as 

fl~ = 13 when xl~ l<x<xl~ 2 and fl~-- 0 when x<xt~ 1, xl~ 2<x (1.3) 

where X~l and xl~ 2 define the size and position of the insert (Fig. 1). 
The solution of problem (1.1) depends on the similarity parameters 13, Ps and Z, which characterize 

the porosity of the insert, the supply pressure and the compressibility of the lubricant. Like the flow 
rate coefficient q introduced earlier, we will define the coefficients of the load capacity CN, stiffness Ca 
and additional flow rate by the equalities 

1 " 

Cr r _ N _ Spdx_P**, Cc G = - - - - - - ~ ,  qp = 2Qpl(xp**Uh m) (1.4) 
~[Lp~ U2 o TLp** U 

The static stiffness G of the lubricant layer and its coefficient Ca will be determined in the following 
way [4]. Let the slider perform a small quasi-steady displacement along the y axis by an amount ~ "~ 1. 
Then the height of the gap, the pressure and the flow rate within it can be represented in the form 

h = h o - e ,  P = Po +ep l ,  q = qo +e,ql (1.5) 

The functions ho(x),po(x) and qo(x) satisfy the equations and boundary conditions (1.1) with a zero 
subscript on all the variables. 

Introducing the stiffness by the equation [4] G = dN/de, using relations (1.4) and (1.5) we obtain 

I 

C G = f p l d x  (1.6) 
0 

The differential equation and the boundary conditions for a perturbation of the pressurepl, obtained 
from relations (1.1) and (1.5), take the form 

I - 1  

Pl = (2po+qoPlPo - q l - 3 q o h o l ) p o l h o  3, Pl(0) = Pl(1) = 0 (1.7) 

The quantity ql is defined by the equation 

v 

ql + 2f~PoPl = 0 (1.8) 

Thus, the load capacity is determined from the unperturbed pressure P0, and the static stiffness is 
determined from its perturbation Pl. 

The model used corresponds to subsonic flows. An incompressible lubricant corresponds to M 2 "~ 1, 
)~ ~ 1, and a greatly compressible lubricant corresponds to M 2 < 1, ~ -> 1. The case 13 = 0 corresponds 
to a slider without a porous insert. 

We will estimate the similarity parameters for real cases. If 

U=102rn/s, T=300K,  L=0 .1m,  hm=2 • 10-Sm, ~tc=1.75 x 10-SPas, 

p .  = 0.98 x 105 Pa, p** = 1.3 x 103 g m -3, D = 5 x 10 -3 m, kp = 10 -14 
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We will give the results of the solution of direct problems for porous sliders with a prescribed Rayleigh 
gap (for which the greatest load capacity when [3 = 0 is obtained [6, 7]). The solution is found by 
numerical integration of Eqs (1.1), (1.7) and (1.8) for a specified function ho(x) and X~l = 0, x~2 = 1 
(the entire slider is porous -/p = L). Figure 2 shows graphs of C~ = CN(f3)/C~O) (the continuous curves) 
and C~ = CG(~)/CG(O) (the dashed curves) for Z = 1 (CN(0) = 0.0343, CG(0 ) = 0.0683) and 10 
(CN(O) = 0.0304, Co(0) = 0.0507). The corresponding sliders are also shown. Curves 1, 2 and 3 
correspond to Ps/P= = 1.5, 2, 2.5. An increase in Ps is always accompanied by an increase in the load 
capacity and the stiffness. The function C~(13) is monotonic, and Cb([~) has a maximum, the magnitude 
and coordinate [~m of which depend on the values of Ps and Z. In practice, case of a simultaneous increase 
in the parameters CN and CG are of interest. When Z --- 10 the region [0, [3 m] is considerably greater 
than when Z = 10. Its extent also increases when the parameter Ps increases. 

Note that an increase in the load capacity and stiffness is accompanied by an undesirable increase 
in the additional lubricant flow rate through the porous insert. For fixed values of I~ and Ps and with 
/:, = L, the coefficient qp is a maximum. When the parameters [3 and Ps increase, this quantity qp,max 
increases. 

2. THE O P T I M U M  S L I D E R S  

The sliders investigated above are not optimum in terms of Road capacity when 13 > 0 and are not 
optimum in terms of stiffness whatever the value of [~. We will consider the problem of determining 
the shape of the slider and also the size and position of the porous insert that, for specified [3, Ps and 
Z, ensure either maximum load capacity or maximum static stiffness, when there is a constraint on the 
magnitude of the additional flow rate. 

Sliders of  optimum load capacity. It is required to find the function ho(x) and the coordinates X~l and 
x~2 that ensure a maximum of the functional CN taking into account the differential relations (1.1) with 
subscript, the constraints on the height of the gap 1 ___ ho(x) and the additional flow rate qp < qp,max. 

To solve the problem, we will set up the Lagrange functional 

I 

JN = CN + IFN dX + O~qp; 
0 

3 , , 2 2 FN = ~'(Poho - qo - pohoPo) + I't( qo + f ~(Po - Ps)) (2.1) 
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in which )~(x) and ~t(x) are variable and a is a constant Lagrange multipliers. When a = 0 the problem 
changes into one without a constraint on the magnitude of qp, and we obtain lp = L and q = qp max- 

To obtain the necessary conditions of optimality, the funciion Js  is varied according to well-i~nown 
rules [8]. If the gap is optimum, i.e. a maximum of Cs  is attained, the variations ACs = AJs < 0 for any 
variations ~h0 satisfying the constraint on the height ho(x). Variation is carried out taking into account 
the continuity of p0 and q0 in the sections x = Xd of possible discontinuities of the function h0. Their 
presence is a characteristic feature of optimum sliders. In these sections, the Lagrange multipliers may 
also have a discontinuity. Other characteristics sections are x = x~l and.x. = x~2, where . . . . .  the function f~ 
and one of the Lagrange multipliers undergoes a discontinuity. The poslt~on of these d~scontmumes is 
unknown and is determined when solving the problem. 

After the necessary calculations, for the variation ACs = AJs we obtain 

3 t 
ACN = Z {-[~'h3o]PoApo+[I't]Aqo+[)~pohoPo-P'q'o]Ax}+~ f~2-Aqo, 131)+ 

d,131,1~2 

1 

+ (l'tAqo)x = l - (lxAqo)x = o + f { P S P o  + B~ho - (~" + P")Sqo}dx 

0 

(2.2) 

3 ! 
P = PoO~ho) +~.h o + l + 2 1 . t f f j p  o, B = k(3q0h0 l -2p0 ) ;  [w] = w -w+ 

Summation is carried out over all the sections indicated above, where the function h0 or the function 
f~ undergoes a discontinuity. The square brackets denote a discontinuity of the parameter in the 
corresponding section, while the minus and plus subscripts are ascribed to this parameter before and 
after the discontinuity respectively. In expression (2.2), Ax, Ap0 and Aq0 are increments of the x 
coordinate, the pressurep0 and the flow rate q0 in the sectionsx = 0,x = 1,x = Xd, X = xf~l andx = xl~ 2. 

According to expression (2.2), the following problem is formulated for the Lagrange multipliers ~. 
and ~t for any (including non-optimum) gaps that may be formed by the piecewise-continuous function 
ho(x). 

(~.h3o)'+(~,ho+l)Pol+2~tfli = O, [~,h3o]d = O, [~']151 = O, [~']132 -- 0 (2 .3)  

I s  = 0, Ia(0) --- ~t(1) = 0, [li] a = 0, [la]l~ t = a ,  [Ia]l~ 2 = - a  (2.4) 

One of the boundary conditions in (2.4) for the multiplier ~t is satisfied by the choice of quantity ~.(0). 
The conditions at the discontinuities in relations (2.3) and (2.4) indicate that both functions ~t(x) and 
~.(x) may be discontinuous. For multipliers ~. and kt satisfying equations and conditions (2.3) and (2.4), 
expression (2.2) takes the form 

I 

= { [~.PohoPo - l.tqo]Ax } ACs E 3 , , + [. B hodx (2.5) 
d,l~t,132 0 

in which all the variations and increments can be assumed to be independent. 
Since the increments Ax may be arbitrary, it follows that, with the optimum position of the given 

discontinuities of the functions, the coefficients of Ax should vanish. Hence, taking into account the 
conditions at discontinuities (2.3) and (2.4), the differential equations (1.1) (for functions with zero 
subscripts) and the discontinuity of p0 and q0, we obtain the relations 

~'d {P0h0 3 -S _ _ - q o - h o _ h o + ( p o h o + - q o ) }  = O, ~ 1 +  = O, !i1~2_ = 0 (2.6) 

which define the sections Xd, X~l and x~2 in the optimum slider. From relations (2.6) and (2.3), (2.4) it 
follows that 

~'d- = ~'d+ = 0, ~1~1- -- 0[, ~ 2 +  ----" Or, 

Thus, the multiplier ~. is continuous everywhere and passes through zero in the section x = x d, while 
the multiplier ~t undergoes a discontinuity in the sections x131 and xl~2. 
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In part of the slider where ho > 1, the variations 8h0 are arbitrary, and the corresponding condition 
of optimality takes the form 

X(3q0h01 - 2p0 ) = 0 (2.7) 

Equation (2.7), corresponding to the segment of the two-sided extremum (1), enables us to determine 
the height of the gap on it 

h o = 3qoPol/2 (2.8) 

In the part of the slider where h0 = 1 (the segment of the boundary extremum (II)), the permissible 
variations 8h0 > 0. Therefore, here the condition for a maximum of CN is formulated, in accordance 
with relation (2.5), in the form of the inequality 

~.(3q0ho 1 - 2p 0) < 0 (2.9) 

From an analysis of the equations of lubrication and the conditions of optimality obtained, the 
structure of the optimum solution follows. The function ho(x ) contains two segments of optimality 
(I and II) which join in a discontinuous way in the section x = xa. The ends of the porous insert are 
always found in different segments. 

Thus, the problem reduces to a numerical calculation of the multipliers ~ and g from differential 
equations (2.3) and (2.4) and the functionspo, q0 and h 0 from Eqs (1.1) and (2.8) on each of the segments 
indicated. Then the maximum coefficient CN and the functions pl(x) and qa(x) accompanying it (by 
integration of Eqs (1.7) and (1.8)) and the non-optimum coefficient Cc are calculated. 

The results of calculations for Ps/P= = 2, different values of fl and Z and a = 0. This case corresponds 
to the absence of a flow rate constraint. Then the entire slider is porous (X~l I = 0, X~2 ~ 1) and 
qp = %,max. Figure 3 shows the optimum shapes of such sliders for Z = 1 and Z = 10. The curves ~ = 0 
correspond to the optimum Rayleigh sliders with impermeable surfaces. A change in the shape of the 
slider occurs as 13 increases with a reduction in gap height. Here, two factors counteract each other - 
motion of the slider (the dynamic effect) and feeding of the lubricant (the static effect). The first tends 
to increase the front part of the gap, and the second tends to reduce it. As 13 increases, the second factor 
begins to predominate, leading to a reduction in the gap height in section x = 0 and to the formation 
of a hollow in the slider. The function ho(x ) is always discontinuous in the section x = xd. For large 
values of [3, the lubricant may leak out of the gap through both sections - x  = 0 a n d  x = 1.  
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Figure 4 shows the change, as the parameter 13 increases, in the optimum coefficient ~ (the thick 
continuous curves) and in the non-optimum coefficient ~G (the thick dashed curves), determined in 
the same way as in Fig. 2, from which we have taken relations (the thin curves) corresponding to Rayleigh 
sliders that are non-optimum when 13 > 0 with the same parameters. The gain in load capacity is 
considerable, for example, for 13 = 10, it is about 50% when Z = 1 and 15% when X - 10. For low 
values of 13 there is a simultaneous increase in CG, i.e. these shapes, optimum in terms of load capacity, 
also possess increased stiffness. For large values of 13, this is not so. 

Results of  calculations for Ps/P= = 2, different values of  fl and Z and ot ~ O. Different values of (z 
correspond to different values of additional flow rate of lubricant through the porous insert qp < qp,max. 
The length of the insert becomes smaller than that of the slider (xa2 - xl31) < 1. The coordinates xB1, x132 
and the flow rate qp coefficient are found from the solution of theproblem. Figure 5 shows the shapes 
of the optimum sliders for X = 1, I~ = 1 (qn m a x  ---- 2.587) and g = 10, [3 = 10 (q? m a x  ---- 0.146) for different 
relat,ve coefficients qp = qJqp max- The rectdmear horizontal dashed segments show the pos~tlons of 
the porous inserts, defined by the coordinates x131 and x132. As an example, the shaded area denotes the 
corresponding inserts for one of the versions of each values of X. In a similar way it is possible to show 
inserts for other values of q~. 
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The lines q~, = 0 correspond, as in Fig. 3, to impermeable Rayleigh sliders. It is significant that the 
optimum position of the insert is in the middle part of the slider, close to sectionxd, and here it is always 
the case that X~l < xd < x[~2. This is illustrated in Fig. 6, where the dependence of the coordinates X[~l, 
x~2, Xu on the parameter q~ in accordance with Fig. 5 for the first case when 2 = 1 is shown. 

It can be seen that a reduction in qp is accompanied by a reduction in load capacity. In Fig. 7 the 
level of this reduction is illustrated by the relations C~(qp) = CN(qp)/CN(qp max) for the optimum sliders 
from Fig. 5 (;~ = 1 - CN,max = 0.186, Z = 10 - CN,ma x = 0.058).  

Optimum sliders in terms of  the static stiffness of  the lubricant layer. It is required to find the maximum 
functional (1.6) using relations (1.1), (1.7) and (1.8), under conditions of the gap height constraint 
indicated earlier and a possible constraint on the quantity %. The corresponding Lagrange functional 
has the form 

1 
= + 2P0 - ql - hoPoPl) +/dl(ql + 2f~PoPl )}dx + Otqe Jc C G + f { Fu + 3.1(qoplpo 1 - 3qoho I 3 , , 

o 

with additional, Lagrange multipliers ~,I(X) and gl(X) compared with the functional JN. Note that the 
functional J c  contains the function FN from integral (2.1). Analysis of this functional for a maximum 
is carried out in the same way as above. 

Now the problem for the Lagrange multipliers is formulated as follows: 

(~,h3o) ' + ~,hoPo 1 + ~qpo2(ql  + qo(3Po - 2plho)Pol ho 1) + 2f13(g + pqplpo 1) = 0 

[~,h30]d = 0, [~L]I~I = 0, [~L][~2 = 0 
(2.10) 

(~,lh3o)'+(~qho+l)Pol+2fltlll = 0; [~lh03ld = 0, [~'11[~1 = 0, [~,11~2 = 0 (2.11) 

l . t ' + X + ~ q ( 3 h o l - p l p o l ) = o ;  g ( 0 ) = g ( 1 ) = 0 ,  [ g ] d = 0 ,  [I.t]131 = a ,  [g] l~2=-~ (2.12) 

lffl + ~ 1  = O, ~1(0)  = ~1(1)  = O, []s = O, [~1][~1 = O, [~s = 0 (2.13) 
[w] = w _ -  w+ 

The square brackets mean the same as in expressions (2.2)-(2.4). The values of ~(0) and ~,1(0), necessary 
for the integration of Eqs (2.10) and (2.11), are unknown in advance and are selected by satisfying the 
second conditions from relations (2.12) and (2.13). The conditions in sections Xt~l,Xd andx~2, determining 
their optimum position, have the form 



Optimization of the shape of a porous slider as regards load capacity or static stiffness 701 

3 -3 
ka-{ poho - - qo - ho-ho+(poho+ - qo) }a + 

r3  t - 3  z -1 -1 
+ ~qa-{qoPlPo I - 3qoho l- + 2po - ql - no-no+tqoPlPo - 3Poho* + 2po - ql)}a = 0 

~ 1 +  = 0, ~ 2 -  = 0 

Analysis of the variation of functional JG and the optimality conditions obtained indicate that the 
solution of the problem has the same features as for the case of maximum load capacity. To be precise, 
there are two segments of optimality (the two-sided extremum (I) and the boundary extremum (II)) 
joining with a discontinuity of the function ho(x) or without a discontinuity, depending on the values 
of the parameters of the problem. On the segment of the two-sided extremum, the condition of 
optimality, determining the function ho(x), reduces to the question 

~,(3q0 - 2poho)ho + 3~q {qlh0 - 2P0h 0 + q0(4 - hoplpo l )}  = 0 (2.14) 

On the segment of the boundary extremum (h0 = 1) the condition of optimality corresponds to the 
requirement that the left-hand side of Eq. (2.14) should be negative. 

In the section x = x~ of the discontinuity of the height of the optimum gap, the multipliers )a and ).tl 
are continuous, while the multipliers k and ~.1 can become discontinuous. At the ends of the porous 
insert, the coordinates of which X~l and x[~2 are determined in the course of the solution, the multiplier 
~t becomes discontinuous with continuous multipliers p_~, ~. and ~.l- The above equations and relations 
enable us to find the shapes of the sliders with the greatest static stiffness for different values of the 
parameters. The problem reduces to a numerical calculation of ~., k~, i~ and la~ from the differential 
equations and conditions (2.10)-(2.13), P0, q0 and h 0 from Eqs (1.1) and (2.14), and alsopl and ql from 
Eqs (1.7) and (1.8) on each of the segments indicated. 

Results o f  calculations for  Ps/P= = 2, different values o f  ~ and Z and a = 0. This case corresponds to 
the case when there is no constraint on the flow rate qp. The entire slider is porous (x131 = 0, x[~2 = 1) 
and qp -- qe,max- The special case 13 - 0 for an impermeable slider with an incompressible lubricant was 
investigated earlier [9]. For a compressible lubricant, Fig. 8 shows the optimum sliders when X = 1 and 
X = 10. The dot-and-dash curves give the corresponding Rayleigh sliders from Fig. 3; the remaining 
curves correspond to stiffness-optimum sliders for different 13. The 13 = 0 curve corresponds to an 
impermeable slider. At low compressibility (X = 1) the presence of projections, when there is a 
discontinuity of the function h0, is characteristic. When the parameter 13 increases, the height of the 
gap ho(x) becomes continuous and decreases. 

Figure 9 shows the change in the optimum coefficient CN (the dashed curves) and the accompanying 
non-optimum coeff• C~ (the continuous curves) as the parameter [3 increases. The corresponding 
relations for non-optimum sliders (for the Rayleigh shape from Fig. 2) with the same parameters are 
represented by the thin curves. The gain in stiffness turns out to be considerable. For example, for 
13 = 5 it is about 65% when X = 1 and 9% when X = 10. For such sliders, a gain in load capacity is also 
always obtained. 

Results o f  calculations for  Ps/P= = 2, Z = 1, r = 0.2 and  a ~ O. The results relate to different values 
of the prescribed lubricant flow rate through the porous insert q. < qp max- Unlike the case when ot = 0, 
the length of the insert becomes smaller that the length of the~slider. Figure 10 shows the shapes of 
the optimum sliders for different values of the relative coefficients q~ = q q max (q  max = 0 5 7 8 )  The 
rectilinear dashed segments show the positions of the porous inserts c~efinre~d ~'~ the ~(~ordinaiesxl3 ] and 
x~2. As in Fig. 5, one of the inserts (q~ = 0.03) has been shaded. 

The qp curve corresponds, as in Fig. 8 with [3 = 0, to an impermeable slider. It is significant that the 
optimum position of the insert, as in sliders that are optimum in terms of load capacity, is in the middle 
part of the slider. The dependences of coordinates xo, x~l and x~2 on parameter qp behave qualitatively 
as in Fig. 6. 

A reduction in qp is accompanied by a reduction in stiffness. In Fig. 11 the level of this reduction is 
illustrated by the dependences of Cb (dashed curves) and C~ (continuous curves) on q~ for optimum 
sliders from Fig. 10 ( C G , m a  x = 0.136, C N ,  m a  x = 0.053). 
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3. CONCLUSIONS 

The problem of determining the optimum shapes of an infinite plane porous slider with an isothermal 
compressible lubricant that ensure either the greatest load capacity or the greatest static stiffness of 
the lubricant layer, given a constraint on the lubricant flow rate through the porous surface, has been 
formulated and solved. It has been shown that, depending on the parameters of the problem - the 
compressibility of the lubricant ~, the porosity 13 and the supply pressure Ps - the height of the gap of 
the optimum slider can be both a continuous and a discontinuous function of the longitudinal coordinate. 
As the parameters 13 and Ps increase, the load capacity increases while the stiffness has a maximum. In 
a certain range of variation in parameter 13, both characteristics are increasing. 

The optimum slider shapes obtained can yield a gain in load capacity and stiffness, compared, for 
example, with an impermeable Rayleigh slider, of up to 100% at X = 1. When the compressibility 
increases, the gains decrease appreciably. There are ranges of the governing parameters where slider 
shapes are obtained both with a high load capacity and high stiffness, 

A constraint on the magnitude of the lubricant flow rate through the porous insert is achieved by 
reducing the parameters 13 and Ps, and also the longitudinal dimensions of the porous insert, which is 
accompanied by losses in load capacity and static stiffness. It has been shown that the optimum insert 
position is in the middle part of the slider. 
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